CAT Scanning

Here are some sample images that illustrate the process. The algorithm is quite simple

 by rotating the target image and then averaging all values in the rows of the image. Then I rotate the slice back to the original angle.

Slices are sythesized from a 180 degree rotation of the target image.

The target and fou 1 dimensional sections. The position of the sections cooresponds to the angle of projection.

 transparent. If there are parts of a target that are totally opaque even to x-rays then this will result in abiguous, hidden sections.

 off the contrast so that it is difficult to see the notch at the top of the target, but you can more or less make it out.

 enhancement that will be weighted based on the distance from the center of the image

Source Code

This is a rough draft of the source code written in Python. It requies the PIL module for image manipulation.
\# This takes an image and averages all pixels in the horizontal rows.
\# It creates an image of horizontal bands.
import Image
from pprint import pprint
\# This is the name of the target PNG format image file that will be used
\# to synthesize the radial sections. Give this name without the .PNG extension.
TARGET_NAME = 'target
\# This sets the number of radial sections to synthesize.
SECTIONS $=64$
def band_horizontal (im)
"""This takes an image and turns each horizontal row into a
homogenous band by averaging all pixels in the row.
This creates a 1 D section of the image.
im_new $=$ Image.new ("L", im.size, 255)
vidth = im.size[0]
height $=$ im.size[1]
$\mathrm{s}=$ list (im.getdata())
for y in range (0 , height)
total $=0$
for x in range (0 , width) :
gray $=$ total / width
for x in range (0 , width) :
im_new.putpixel((x, y), gray)
return im_new
def average_pixels (bands, (x, y))
"""This takes a set of images and returns the average pixel value
averaged over the same (x, y) cordinate in each image.
averaged over the same (x, y) cordinate in each image.
This assume the set of images are the same size.
$a=0$
for b in bands:
$\mathrm{p}=\mathrm{b}$. getpixel $((\mathrm{x}, \mathrm{y}))$
$a=a+p$
\# Script starts here.
print 'step 1 - Synthesizing 1D radial bands'
im $=$ Image.open (TARGET_NAME+'.png')
\# If not gray scale, then convert to gray scale.
if im.mode != 'L':
im = im.convert ('L')
for a in range (SECTIONS):
print '\tBand \#\%Od' \% a
print '\t\tangle:', $a^{\star}(180.0 /$ SECTIONS $)$
im2 $=$ im.rotate ($a^{*}(180.0 /$ SECTIONS $)$, Image. BICUBIC $)$
im3 $=$ band_horizontal (im2)
im4 4 . im4.save (TARGET NAME+' \%02d.png'\%a)
print 'step 2 - Collecting 1D radial bands'
imc $=$ Image.new ("L", im.size, (255))
for a in range (SECTIONS):
imband.append (Image.open (TARGET NAME+' \%02d.png' \% a))
print 'step 3 - Merging 1D radial bands into image.'
for y in range (im.size[0]):
print '\thow \#\%Od' \% y
for x in range (im.size[1])
av $=$ average_pixels (imband, (x, y)) imc.putpixel ((x, y), av)
imc.save (TARGET_NAME+'_out.png')

